# Signal Changes in the Corpus Callosum Following Ventricular Shunt Placement

Ibrahim Kaouk, BS, BA Kevin Hiatt, MD





# **Disclosures**

None





# Background

- Ventricular shunting is the standard treatment for obstructive hydrocephalus.
- In ~8% of patients, post-shunt signal abnormalities of the corpus callosum (CC) have been reported.<sup>1</sup>
- These changes are usually described months after shunt placement, but acute and severe changes can also occur.
- Proposed mechanisms: traction/edema from rapid decompression. Imaging findings are often more dramatic than clinical presentation.<sup>2</sup>





# **Background**

Why does this matter?

 Corpus callosum signal changes can mimic ischemia, demyelinating disease, or neoplasm, leading to misdiagnosis and unnecessary workup.



### Purpose

- To review cases of corpus callosum signal abnormality following ventricular shunt placement or reprogramming.
- To describe the imaging patterns, timing, and clinical correlates across 3 patients at a single tertiary academic center.
- To increase awareness of this phenomenon and highlight how to distinguish it from mimics (ischemia, demyelination, neoplasm).





### **Methods**

- Design: IRB-approved retrospective review at a single tertiary care academic center.
  - Inclusion criteria: Patients with post-shunt CT or MRI showing corpus callosum signal abnormality after shunt placement or reprogramming for hydrocephalus.

- Data collected:
  - Etiology of hydrocephalus
  - Imaging modality and timing
  - Distribution and pattern of corpus callosum abnormality
  - Evolution on follow-up imaging
  - Clinical presentation and symptoms of callosal disconnection





3 patients with post-shunt corpus callosum (CC) signal abnormality were identified.





- 79-year-old male
- Etiology for obstructive hydrocephalus: acquired aqueductal stenosis
- Intervention immediately preceding callosal signal change: VP shunt placement
- Time from intervention to signal change: 1 day
- Evolution of signal change: persisted at 6 months
- Clinical outcome: no callosal disconnection symptoms







Immediate postprocedural coronal CT image showing enlargement of the lateral and 3<sup>rd</sup> ventricles.



Following marked decompression of the ventricles, there is abnormal hypoattenuation in the corpus callosum apparent on this coronal CT image.







A sagittal T1-weighted MRI image shows CSF intensity cystic areas throughout the corpus callosum, particularly near its superior margin.



An axial T2-FLAIR MRI image hyperintensity throughout the corpus callosum with signal suppression in the cystic components.





- 77-year-old female
- Etiology for obstructive hydrocephalus: skull base mass (chondrosarcoma)
- Intervention immediately preceding callosal signal change: VP shunt placement
- Time from intervention to signal change: 3 weeks
- Evolution of signal change: persisted at 1 month
- Clinical outcome: no callosal disconnection symptoms







Preprocedural coronal CT image showing enlargement of the lateral and 3<sup>rd</sup> ventricles



Following marked decompression of the ventricles after shunt placement, there is abnormal hypoattenuation in the corpus callosum as shown on this coronal CT image.









Axial T2-FLAIR images from an MRI obtained 6 weeks later demonstrate abnormal hyperintense signal throughout the corpus callosum.





- 59-year-old male
- Etiology for obstructive hydrocephalus: spontaneous cerebellar hemorrhage
- Intervention immediately preceding callosal signal change: Shunt reprogramming
- Time from intervention to signal change: 1 day
- Evolution of signal change:
  largely resolved by 3 months
- Clinical outcome: no callosal disconnection symptoms







Preprocedural coronal CT image showing enlargement of the lateral and 3<sup>rd</sup> ventricles



Following marked decompression of the ventricles after shunt reprogramming, there is abnormal hypoattenuation in the corpus callosum as shown on this coronal CT image.







A coronal T2-FLAIR image from an MRI obtained 3 months later demonstrates essential resolution of the signal abnormality in the corpus callosum.





#### CASE 1

- 79-year-old male
- Etiology for obstructive hydrocephalus: acquired aqueductal stenosis
- Intervention immediately preceding callosal signal change: VP shunt placement
- Time from intervention to signal change: 1 day
- Evolution of signal change: persisted at 6 months
- Clinical outcome: no callosal disconnection symptoms

#### CASE 2

- 77-year-old female
- Etiology for obstructive hydrocephalus: skull base mass (chondrosarcoma)
- Intervention immediately preceding callosal signal change: VP shunt placement
- Time from intervention to signal change: 3 weeks
- Evolution of signal change: persisted at 1 month
- Clinical outcome: no callosal disconnection symptoms

- 59-year-old male
- Etiology for obstructive hydrocephalus: spontaneous cerebellar hemorrhage
- Intervention immediately preceding callosal signal change: Shunt reprogramming
- Time from intervention to signal change: 1 day
- Evolution of signal change:
  largely resolved by 3 months
- Clinical outcome: no callosal disconnection symptoms





### Conclusion

- In our cohort, all three patients developed corpus callosum signal abnormality after shunt placement or reprogramming.
  - The onset was variable, appearing as early as Day 1 post-placement, several weeks later, or following shunt reprogramming.
  - The course also differed, with persistent findings at six months in one case, persistence at one month in another, and near-resolution by three months in the third.
  - Clinically, none showed clinical signs of callosal disconnection, though one had transient confusion that improved after shunt reprogramming.
- Recognition of this entity helps avoid misdiagnosis as ischemia, demyelination, or neoplasm, and supports appropriate shunt evaluation.





#### References

- Su, S., McArdle, D., & Gaillard, F. (2020). Post-shunting corpus callosal signal change and review of the literature. Journal of Clinical Neuroscience, 72, 308–314. https://doi.org/10.1016/j.jocn.2019.12.032
- 2. Lane, J. I., Luetmer, P. H., & Atkinson, J. L. (2001). Corpus callosal signal changes in patients with obstructive hydrocephalus after ventriculoperitoneal shunting. AJNR Am J Neuroradiol, 22(1), 158–162.





Thank you!

