## **KRATOM NEUROTOXICITY INTERESTING CASE PRESENTATION**

### ALYSSA COLOMBO, MD CANDIDATE 2025, KEVIN HIATT, MD



Wake Forest University School of Medicine

### CLINICAL PRESENTATION

The patient is a 20 year old male presenting for evaluation of progressive generalized numbness.

- One year prior, the patient noticed **static-like numbness** in his bilateral distal lower extremities. The numbness was patchy and intermittent, with paresthesia. It slowly progressed to involve the lower back, face, arms, and legs.
- On exam, there was patchy hyperesthesia and dulled sensation to light touch throughout all 4 extremities in a non-dermatomal pattern. Normal vibratory sensation and reflexes were observed in all 4 extremities.
- EMG/NCS and OCTs were unremarkable. Laboratory values were within normal limits.
- A brain MRI WO from 2 years prior reportedly showed no acute intracranial abnormality. Repeat MR imaging of the brain, C-Spine, and T-spine WWO were obtained.

# IMAGING DISCUSSION

MRI Brain without and with contrast showed symmetric high T1 signal in the region of the globus pallidus bilaterally.

- No abnormal high T1 signal is noted in the dentate nuclei.
- There was no corresponding abnormal signal on T2-weighted imaging and no associated enhancement.

# IMAGING DISCUSSION

The differential diagnosis provided by radiology for the abnormal T1 signal included hepatic encephalopathy, prolonged total parenteral nutrition administration, or sequela of gadolinium deposition.

- However, none of these seemed likely upon clinical correlation.
- A detailed history of any possible toxin ingestion was recommended by radiology.



### MANAGEMENT

Upon further discussion, the patient reported Kratom use beginning 2 years prior to presentation ultimately progressing to an addiction 1 year prior.

- His symptoms were considered likely secondary to Kratom use and he started Suboxone therapy immediately, ultimately weaning off and quitting successfully.
- Despite cessation of substance use, the patient's symptoms continued to progress.
- An additional EMG/NCS was obtained the following year without evidence of large fiber neuropathy.
- Skin biopsy was also negative for small fiber neuropathy.

### WHAT IS KRATOM?

Kratom (*Mitragyna speciosa*) is a tropical tree native to Southeast Asia, and is used as an over-the-counter, opioid-mimic.

- Consumption of its leaves produces both stimulant effects (in low doses) and sedative effects (in high doses).
- Kratom leaves contain two major psychoactive ingredients (mitragynine and 7-hydroxymytragynine) which stimulate μ opioid receptors and are more potent than morphine.
- Psychotic symptoms have been observed in some patients as well as psychological and physiological dependence.



## KRATOM IN THE U.S

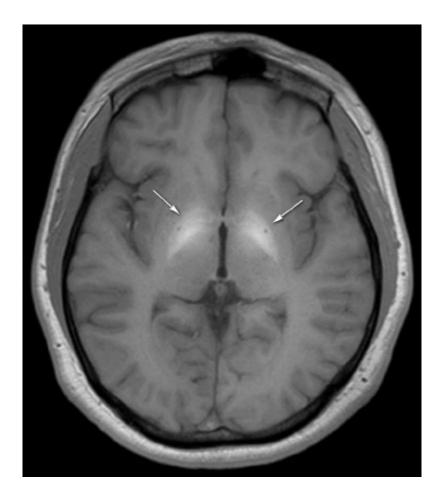
Happen

He Ke

23.0

Smith Like

Rega


- In the U.S., **Kratom and Kratom-based products are currently legal**, though advised against by the FDA for medical treatments.
- This drug can be purchased online or in person at recreational stores, and its abuse has increased markedly in recent years.
- An estimated 1.7 million Americans aged 12 and older used Kratom in 2021, according to the Substance Abuse and Mental Health Services Administration's National Survey on Drug Use and Health.

### OUTCOME

### The patient's continued symptoms were thought to be due to longterm Kratom exposure.

- Other considerations such as manganese toxicity were considered.
- However, high levels of manganese could also be linked to Kratom use, as heavy metals have previously been reported in Kratom samples.
- Repeat MRI may be indicated if symptoms continue to worsen substantially.
- For the time being, management consists of monitoring and continued abstinence from Kratom use.





### TAKE HOME POINTS

- On MRI of the brain, Kratom toxicity typically presents with symmetric T1 signal hyperintensity involving the globi pallidi, subthalamic nuclei, and cerebral peduncles with no corresponding diffusion restriction or enhancement.
- These signal changes have been shown to resolve following cessation of Kratom use, however the time course is still uncertain.
- These findings are nonspecific and should be correlated clinically with drug and toxin-exposure history.

Figure: Typical brain MRI in manganism, showing bilateral hyperintensities in GP in T1 weighted image. (Courtesy of Dr M. Okujava, Institute of Medical Research, Tbilisi.)



## •

#### BEHAVIORAL

Continuous vomitingHepatotoxicity

- Hallucinations
- Psychosis

Nausea

 Addiction and withdrawal causing aggression and insomia

GASTROINTESTINAL



#### NERVOUS

- Excessive sweating
- Loss of appetite, anorexia, weight loss
- Dizziness
- Tremors
- Seizures



#### URINARY

Increased urinationConstipation



#### KIN

- DiaphoresisPruritus
- Hyperpigmentation



WITH ACUTE TOXICITY... Possibility of death

### TAKE HOME POINTS

- Manganese toxicity may present similarly with distinctive symmetrical high-signal lesion in the globus pallidus region of the basal ganglia on T1but not T2-weighted MR.
- In a 2019 survey of Kratom-based products, the FDA found levels of lead and nickel exceeding the guidelines for safe exposure, which raises concern for heavy metal poisoning in long-term users.
- A smaller 2023 analysis of Kratom-based products showed high levels of manganese in a minority of samples, but at levels concerning for manganese toxicity with long term use.
- Due to the lack of FDA regulation of this product, there is significant variation in what Kratom users may consume and healthcare practitioners should maintain a high index of suspicion for associated toxicities.

## RESOURCES

Kratom neurotoxicity. American Journal of Neuroradiology. (n.d.). https://www.ajnr.org/ajnr-case-collections-diagnosis/kratom-neurotoxicity

Kratom. DEA. (n.d.). https://www.dea.gov/factsheets/kratom

Manganism | Radiology Reference Article | radiopaedia.org. Radiopaedia. (n.d.). https://radiopaedia.org/articles/manganism

Office of the Commissioner. (n.d.-a). FDA and Kratom. U.S. Food and Drug Administration. https://www.fda.gov/news-events/public-health-focus/fda-and-kratom

Office of the Commissioner. (n.d.-b). Laboratory analysis of Kratom products for heavy metals. U.S. Food and Drug Administration. https://www.fda.gov/news-events/public-health-focus/laboratory-analysis-kratom-products-heavy-metals

Prozialeck, W. C., Pereira, J. B., Kumakli, H., Garcia-Romeu, A., Siskawardani, D. D., Zhong, W.-S., Filippini, T., Han, C., Jaishankar, M., Nookabkaew, S., Shellard, E., Braley, C., Soomro, M. T., & Rashid, M. H. (2023, January 26). *Analysis of heavy metals content in commercially available kratom products in Richmond, Virginia*. Forensic Chemistry. https://www.sciencedirect.com/science/article/abs/pii/S2468170923000103

Samhsa. (n.d.-a). https://www.samhsa.gov/data/sites/default/files/reports/rpt39443/2021NSDUHFFRRev010323.pdf

Tatum, W. O., Hasan, T. F., Coonan, E. E., & Smelick, C. P. (2018, April 17). *Recurrent seizures from chronic kratom use, an atypical herbal opioid*. Epilepsy & behavior case reports. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6063981/

Venn diagram showing the occurrence of manganism, manganese-induced... | download scientific diagram. (n.d.-b). https://www.researchgate.net/figure/enn-diagram-showing-the-occurrence-of-manganism-manganese-induced-Parkinsonism-and\_fig1\_40689817