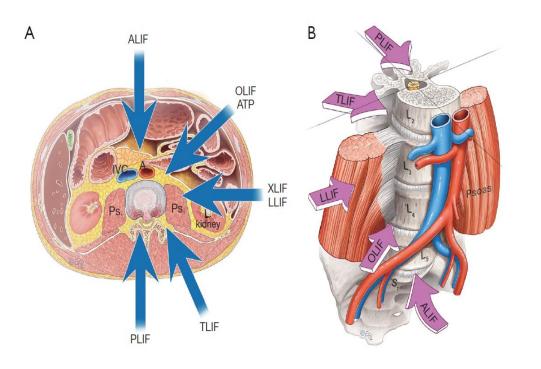


Predicting Surgical Approach Safety with a Novel Psoas MRI Classification System

Arash Emami, MD¹, George Abdelmalek, MD¹, Iciar Davila, MD¹, Stuart Changoor, MD¹, Neil Patel, MD¹, Daniel Coban, MD¹, Harjot Uppal, MBA¹, Nikhil Sahai, MD¹, Kumar Sinha, MD¹, Ki Soo Hwang, MD¹ ¹St. Joseph's University Medical Center, Paterson, NJ

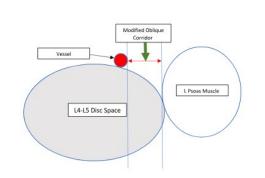
Disclosures:

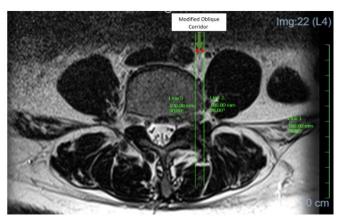

- Ki Hwang is a consultant for Stryker Spine
- Arash Emami receives research grants from NuVasive

None of which are related to this study

Background and Purpose

- Comparison of OLIF and XLIF:
 - XLIF: Higher incidence of nerve injuries
 - OLIF: Higher incidence of vascular injuries
- Purpose: To introduce a novel classification system using magnetic resonance imaging (MRI) to describe psoas morphology and examine its association with the position of nearby neurovascular structures.



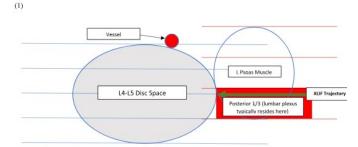

(2)

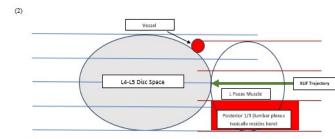
Methods: Modified Oblique Corridor

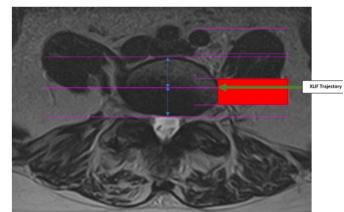
(1)

- 253 MRI scans reviewed
- Measurements taken on **left psoas muscle** at the level of the L4 inferior endplate.
- Classification of psoas muscles:
 - A: Ventral border > 2 mm anterior to vertebral body
 - \circ B: Ventral border \leq 2 mm anterior or posterior to vertebral body.
 - Ventral border > 2 mm posterior to vertebral body.
- Modified oblique corridor between psoas muscle and lateral nearest aortoiliac structure.

Figure 1. An example of a Class A psoas morphology demonstrating an open, positively valued modified oblique corridor.




Figure 2. An example of Class C psoas morphology demonstrating a narrow, closed modified oblique corridor.



Methods: Trajectory for an LLIF Approach

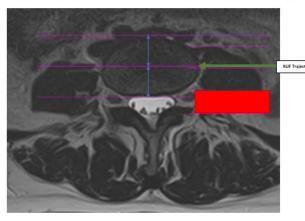
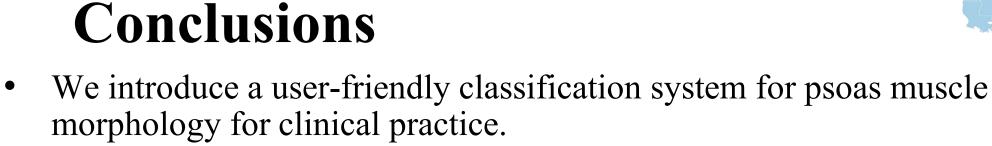

- AP distances of the psoas measured at the mid-substance portion where these distances were greatest.
- Psoas segmented into 3 equal portions, with the posterior third termed the "danger zone" due to the presence of the lumbar plexus.
- Preferred XLIF trajectory aimed at midsagittal point of the intervertebral disc projected onto a T2 axial image.
- Trajectory violating the posterior third of the psoas considered dangerous due to potential iatrogenic nerve injury.

Figure 3. An example of a Class A psoas morphology demonstrating a dangerous XLIF trajectory.

Figure 4. An example of Class C psoas morphology demonstrating a safe XLIF trajectory.

Results

- Those with Class A psoas morphology
 - Largest modified oblique corridor (8.99 mm)
 - Highest XLIF trajectories that penetrated through the "danger zone" (34.1%)
- Those with Class C psoas morphology
 - Narrowest modified oblique corridor (4.66 mm)
 - No XLIF trajectories that penetrated through the "danger zone" (0.0%)


Table 1: Comparison of Psoas Morphologies and XLIF Trajectory at L4 Endplate

	Α	В	С	p-value
Patients	44	27	29	N/A
Age (years)	56.52	60.30	52.34	0.227
Males (%)	38.6%	37.0%	24.1%	0.409
Modified Oblique Corridor (mm)	8.99	8.10	4.66	0.040*
LLA (°)	45.87	51.92	54.01	0.011*
AP Distance (mm)	51.13	41.26	37.62	<0.001*
Posterior Third ('Danger Zone') (mm)	16.66	13.75	12.54	<0.001*
XLIF Trajectory Intersecting 'Danger Zone' (%)	34.1%	3.7%	0.0%	<0.001*

LLA= Lumbar Lordosis Angle; AP=Anteroposterior; mm= millimeters; XLIF=extreme lateral lumbar interbody fusion; *denotes statistical significance

Southeastern Neuroradiological Society

• Class A psoas:

• Largest modified oblique corridor (lowest likelihood of vascular injury with OLIF)

 Highest proportion of dangerous XLIF trajectories (highest likelihood of neural injury with LLIF)

 \circ Safest with OLIF procedure.

• Class C psoas:

Narrowest modified oblique corridor (highest likelihood of vascular injury with OLIF)
No dangerous XLIF trajectories were identified (lowest likelihood of neural injury with LLIF)

 \circ Safest with XLIF procedure.

Limitations

- Distances measured on axial MRI images were based on supine positioning
- LLIF and OLIF performed in the lateral decubitus position
 - Anatomical positions of the aorta, IVC, and psoas may vary, impacting the oblique corridor intraoperatively
- Psoas morphology can change with age and in various pathological conditions
- Using a simplified and standardized methodology may affect the accuracy and individualization of specific patient needs

References

- 1. Mobbs RJ, Phan K, Malham G, Seex K, Rao PJ. Lumbar interbody fusion: techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF. J Spine Surg. Dec 2015;1(1):2-18. doi:10.3978/j.issn.2414-469X.2015.10.05
- 2. Ozgur BM, Aryan HE, Pimenta L, Taylor WR. Extreme Lateral Interbody Fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion. Spine J. Jul-Aug 2006;6(4):435-43. doi:10.1016/j.spinee.2005.08.012
- 3. Eck JC, Hodges S, Humphreys SC. Minimally invasive lumbar spinal fusion. J Am Acad Orthop Surg. Jun 2007;15(6):321-9. doi:10.5435/00124635-200706000-00001
- 4. Phan K, Rao PJ, Scherman DB, Dandie G, Mobbs RJ. Lateral lumbar interbody fusion for sagittal balance correction and spinal deformity. J Clin Neurosci. Nov 2015;22(11):1714-21. doi:10.1016/j.jocn.2015.03.050
- 5. Epstein NE. High neurological complication rates for extreme lateral lumbar interbody fusion and related techniques: A review of safety concerns. Surg Neurol Int. 2016;7(Suppl 25):S652-S655. doi:10.4103/2152-7806.191070
- 6. Emami A, Patel N, Coban D, et al. Comparing clinical and radiological outcomes between single-level OLIF and XLIF: A systematic review and meta-analysis. N Am Spine Soc J. Jun 2023;14:100216. doi:10.1016/j.xnsj.2023.100216
- 7. Hu WK, He SS, Zhang SC, et al. An MRI study of psoas major and abdominal large vessels with respect to the X/DLIF approach. Eur Spine J. Apr 2011;20(4):557-62. doi:10.1007/s00586-010-1609-1
- 8. Uribe JS, Arredondo N, Dakwar E, Vale FL. Defining the safe working zones using the minimally invasive lateral retroperitoneal transposas approach: an anatomical study. J Neurosurg Spine. Aug 2010;13(2):260-6. doi:10.3171/2010.3.SPINE09766
- 9. Ng JP, Kaliya-Perumal AK, Tandon AA, Oh JY. The Oblique Corridor at L4-L5: A Radiographic-Anatomical Study Into the Feasibility for Lateral Interbody Fusion. Spine (Phila Pa 1976). May 15 2020;45(10):E552-E559. doi:10.1097/BRS.0000000003346
- 10. Nojiri H, Okuda T, Miyagawa K, et al. Localization of the Lumbar Plexus in the Psoas Muscle: Considerations for Avoiding Lumbar Plexus Injury during the Transpsoas Approach. Spine Surg Relat Res. 2021;5(2):86-90. doi:10.22603/ssrr.2020-0074

Department of Orthopaedic Surgery

Thank You!

Southeastern Neuroradiological Society

