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In Brain Tumor 
Imaging

5 Game-
Changing 
Questions?"

How does the addition of a FLAIR sequence to T1CE 
significantly enhance tumor visualization, potentially 
revolutionizing pre-operative planning?

Can deep learning models accurately identify enhancing 
brain tumors without the need for contrast agents, offering a 
safer and more cost-effective approach?

Why is the ability to effectively segment tumors with limited 
data sets a game-changer in clinical practice and medical 
research?

What are the key advantages and challenges of using 
single-sequence models for brain tumor segmentation, and 
when are they most beneficial?

How do automated segmentation models demonstrate 
strong generalizability across different imaging scenarios, 
potentially transforming clinical response assessment in 
situations with incomplete data?



Comprehensive 
Imaging 
Modalities for 
Accurate Brain 
Tumor 
Segmentation

+ To perform accurate brain tumor segmentation, a combination of 
various medical imaging data is typically required:

1. T1-weighted (T1) Imaging: Shows brain anatomy.

2. T2-weighted (T2) Imaging: Differentiates brain tissues.

3. T1-weighted with Gadolinium Contrast Enhancement (T1CE) 
Imaging: Highlights tumor-enhancing regions.

4. Fluid Attenuated Inversion Recovery (FLAIR) Imaging: Suppresses 
cerebrospinal fluid, aiding tumor visibility.

5. Diffusion-Weighted Imaging (DWI): Reveals tumor cellularity.

6. Perfusion Imaging: Assesses tumor blood flow.

7. Magnetic Resonance Spectroscopy (MRS): Analyzes tissue 
chemistry.

8. Computed Tomography (CT) Imaging: Provides cross-sectional 
brain images.

9. Positron Emission Tomography (PET) Imaging: Offers metabolic 
insights.

10.Multi-modal Fusion: Combines different modalities for more 
accurate segmentation.



Introduction 
Heterogeneity in Brain Tumors: Progress in 
neuro-oncology is hindered by the marked 
heterogeneity, including genetic, pathological, 
and clinical variations, in brain tumors.

Need for Rich Data: To predict individual 
patient outcomes and treatment susceptibilities, 
large-scale, fully-inclusive, and richly 
phenotyped data, including imaging, are 
required.

Real-World Data Challenges: Data collected in 
routine clinical practice often suffer from quality 
degradation due to real-world clinical care 
constraints.

Machine Learning for Imaging: Machine 
learning, particularly in the domain of imaging, is 
considered a potential solution to address these 
challenges.



Introduction

Segmentation models can accurately detect enhancing tumors even without 
contrast-enhancing imaging, achieving high accuracy.

The additional MR sequences, especially contrast-enhanced ones, may offer 
marginal benefits, potentially reducing cost and risk to patients

The ability to quantify enhancing tumors without contrast administration prompts 
reconsideration of its necessity in certain cases.

Brain tumor segmentation models excel with incomplete MRI sequences 
commonly encountered in clinical practice, promising enhanced precision in 
tumor management.



Challenges
Incomplete data in clinical practice results 
from various factors, including patient 
contraindications, image artifacts, and 
acquisition constraints.

Motion artifact prevalence in MRI studies 
is reported to be 7.5% in outpatient and 
29.4% in inpatient studies, with a 
significant economic impact.

The practical utility of tumor segmentation 
in clinical settings with incomplete data is 
unknown.



Brain Tumor 
Segmentation 
and Validation



+ Typical brain tumor segmentation Architecture with the following high-level steps: 

+ 1. Input: magnetic resonance (MRI) and computed tomography(CT) scans are input into the model; 

+ 2. Preprocessing: apply several techniques to normalize images, remove noise, and filter irrelevant 
components

+ 3: Deep Convolutional Neural Network (DCNN)Application: The preprocessed dataset is fed into a 
DCNN model the extract features for segmentation, with localization a key component; 

+ 4. Output Images: Specifies the result of the segmentation model.







Sample images from BraTS-2018 dataset 
before and after bias field correction



Steps to 
overcome 
challenges of 
incomplete 
data “Relative 
study”

Data Source:
1.Used diverse brain tumor MRI scans from the BraTS 2021 challenge.

Data Preprocessing:
1.Aligned images and removed skull information.

Lesion Segmentation:
1.Combined top-ranked BraTS algorithms and manual refinement by neuroradiologists.

Training Data:
1.Employed a training set of 1251 individuals with 5004 labeled images.

Additional Validation:
1.Included 50 individuals with glioblastoma from 2006 to 2021 for added diversity.

Challenging Cases:
1.Among the 50 participants, 10 had post-operative imaging and tumor recurrence, increasing 
complexity.

Super-Resolution:
1.Used super-resolution to enhance image quality when volumetric data was lacking.

Lesion Labeling:
1.Manually labeled lesions using ITK-SNAP and semi-automated tools.

Tumor Annotations:
1.Employed established labels, including gadolinium-enhancing tumor, peritumoral 
edema/invaded tissue, and non-enhancing tumor/necrotic tumor core.

Detailed Tissue Description:
1.Provided detailed descriptions of tissue components, such as enhancing tumor regions, non-
enhancing tumor/necrotic tumor core, and edema/invaded tissue, each with specific MRI 
characteristics.



Steps to 
overcome 
challenges of 
incomplete 
data “Relative 
study”

Model Selection: Chose nnU-Net, known for its strong performance in 
biomedical image segmentation.

Automated Configuration: nnU-Net automatically handles preprocessing, 
architecture selection, training, and post-processing.

Specialized Architecture: Utilized a self-configuring 3D U-Net architecture 
tailored for image processing.

Optimization Setup: Employed stochastic gradient descent with a 
polynomially decaying learning rate (starting at 0.01).

Loss Function: Used a combined loss function integrating the Sørenson-Dice 
coefficient and cross-entropy.

Data Augmentation: Applied augmentation techniques (rotations, scaling, 
noise, blur, brightness, contrast, gamma correction) during model training.

Training Details: Trained the model for 1000 epochs with foreground 
oversampling to address class imbalances.

Cross-Validation: Utilized 5-fold cross-validation for robust model performance 
assessment.

Evaluation Data: Assessed the model using data from the BraTS 2021 
challenge as well as external/international datasets.



Aspect nnU-Net Standard U-Net

Architectural Diversity
Adapts to dataset and task 
complexity

Single fixed architecture

Architecture Selection Automatic based on data Manual selection and tuning

Training Efficiency
Longer training due to 
complexity

Faster training due to simplicity

Generalization Better across diverse datasets
Depends on manual tuning and 
expertise

Flexibility Highly flexible for different tasks
Designed primarily for 
segmentation

Preprocessing
Often requires minimal 
preprocessing

May need more preprocessing 
effort

Implementation
Potentially more complex to 
implement

Simpler to implement with a 
single arch

Community Support
Smaller but growing 
community support

Larger, well-established 
community



Analysis of MRI-
Based Tumor 
Segmentation 
Models

Training Models:

• Trained separate 
models for various 
MRI sequences (T1, 
T2, FLAIR, T1CE).

• Explored models 
using single 
sequences, two 
sequences, three 
sequences, and a 
complete four-
sequence model.

• Resulted in a total of 
30 different models.

Model Objectives:

• Trained models for 
two primary 
objectives:
• Abnormality 

detection (binary 
lesion mask 
creation for whole 
tumor detection 
and 
segmentation).

• Tumor 
segmentation with 
identification of 
tissue classes 
(oedema, 
enhancing, non-
enhancing tumor 
regions).



Performance Metrics:

Evaluated model performance using the 
Sørenson-Dice coefficient, a common 
research metric.

Dice coefficient formula: 𝐷𝑖𝑐𝑒 = 2(𝑇𝑃) . (𝑇𝑃 + 
𝐹𝑃) + (𝑇𝑃 + 𝐹𝑁).

Additional Performance Metrics:

Utilized various other metrics, including 
accuracy, false discovery rate, false negative 
rate, false omission rate, false positive rate, 
negative predictive value, precision, and 
recall.

Calculated metrics for both the entire tumor 
and its separate tissue components.

Provided 95% confidence intervals for these 
metrics.



Analysis of MRI-Based Tumor Segmentation Models

Regression Models:
Developed regression models to relate ground truth tumor volumes to model 
predictions.

Reported the coefficient of determination (R2).

Acquisition Time Comparison:
Compared model performance with the acquisition times of contemporaneous 
imaging protocols.

Measured the time it takes to acquire each imaging sequence.

tSNE Analysis:
Applied t-distributed stochastic neighbor embedding (tSNE) to contrast-
enhancing components of lesions in the BraTS dataset.

Created a two-dimensional representation of lesions to highlight their high-
dimensional similarities and differences.

Visualization: Visualized variation in lesion volume and Sørenson-Dice coefficient in relation to 
lesion morphology.

Supplementary Material: Provided detailed 95% confidence intervals and supplementary material for 
reported metrics.



“Incremental Performance Gains with 
Sequential Addition" effectively conveys the 
idea that performance improves as sequences 
are added incrementally

Evaluation Method: The models are evaluated 
using Dice coefficients to measure segmentation 
accuracy.

Whole Tumor 
Segmentation:

Dice coefficients range from 
0.907 (single sequence) to 
0.945 (complete sequence 
set).

Segmentation of Different 
Tumor Components:

Dice coefficients vary from 
0.701 to 0.891.

Poor performance in non-
enhancing tumor 
segmentations, especially in 
single-sequence models 
(T1, T2, FLAIR) and 
two/three-sequence 
models without contrast.

No Overfitting: No evidence of model overfitting 
based on training/validation curves.



“Incremental 
Performance Gains with 
Sequential Addition"

Image Segmentations: Image 
segmentations across all models show 
excellent lesion coverage with 
minimal error.

Additional Metrics: Model accuracy, 
false discovery rate, false negative 
rate, false omission rate, false positive 
rate, negative predictive value, 
precision, and recall were evaluated.



Balancing Acquisition Time and Segmentation Quality

Examined acquisition times for different imaging sequences.

Measured improved model accuracy using Dice coefficient per 
scanning minute.

Discovered certain sequence combinations enhance 
segmentation performance.

Single volumetric T1CE took 3.1 minutes, achieved Dice 
coefficient 0.908.

Adding FLAIR increased time to 4.9 mins, improved Dice to 0.943.

Three-sequence (FLAIR + T1CE + T2) without pre-contrast T1 
reduced time by 33% (9.48 to 6.38 mins).

Omitting pre-contrast T1 had issues in delineating contrast (e.g., 
haemorrhage).



Segmenting Enhancing 
Tumors in Medical Images 
without Contrast

Contrast-Enhanced T1 Sequence: Models without 
the contrast-enhanced T1 sequence can still 
identify the enhancing tumor component with Dice 
coefficients ranging from 0.756 to 0.790.

Enhancing Tumor Volume: The volume of 
enhancing tumors strongly correlates with model 
predictions, even when contrast-enhanced imaging 
is not used.

t-SNE Analysis: t-SNE-derived low-dimensional 
representations of lesions do not show a clear 
relationship between lesion anatomy and 
segmentation performance.

Linear Regression: Linear regression analysis 
reveals a significant correlation between the 
volume of enhancing tumors and model 
predictions, even in the absence of contrast-
enhanced imaging.

Examples of segmenting enhancing tumors without 
contrast, including cases with small enhancing 
components.



"International Clinical Validation 
of Segmentation Models"

Evaluation of Models: Assess 
model performance on a 
group of 50 patients with 
varying scans, both pre- and 
post-operative.

Reproducibility: Confirm that 
model performance is 
consistent using cross-
validation (Dice coefficients 
highly correlated).

Effect of Imaging 
Modalities: Models using 
multiple scan types perform 
better than those relying on a 
single scan type (e.g., T1 or 
T2).

Tissue Class Segmentation: 
Models accurately classify 
tumor subclasses (non-
enhancing, enhancing, and 
edema) for further refinement.

Performance Comparison: 
Compare model performance 
with and without four imaging 
sequences using revised 
ground truth data. Results are 
consistent across different 
datasets.



"International Clinical Validation 
of Segmentation Models"

Lesion Volumetry: Apply 
the segmentation pipeline 
to track lesion volume 
changes over time for a 
patient with variable image 
quality (2010-2015).

Longitudinal Imaging 
Example: Figure 8 
illustrates a single case with 
longitudinal imaging, 
displaying time on the x-axis 
and lesion volume on the y-
axis. Different scanning 
sessions are color-coded for 
tumor components.

Image Quality: Note that 
despite variations in image 
quality, the segmentation 
model consistently 
delineates tissue 
components even in 
suboptimal images.

Recognition of Surgical 
Cavity: The model correctly 
identifies the surgical cavity 
as distinct from the lesion, 
even without being trained 
on post-operative images.



Scatterplot A: Strong correlation between radiologist-
labeled lesions and model predictions for whole 
tumor segmentations, highlighting model accuracy in 
delineating tissue classes.

Scatterplot B: Strong relationship between model 
performance on the validation set and when re-evaluated 
on their own data, using the complete four-sequence 
model as ground truth.



Take home message 

Enhance Tumor 
Visualization:

Add FLAIR sequence to T1CE 
imaging.

Improves contrast and 
highlights edema areas.

Utilize Deep Learning 
Models:

Use deep learning to identify 
tumors without contrast 
agents.

Enhances safety, reduces 
costs, and increases patient 
compliance.

Effective Tumor 
Segmentation:

Develop models that can 
segment tumors with limited 
data.

Maximizes data usage, 
reduces imaging 
requirements, and speeds up 
diagnosis.

Single-Sequence 
Models:

Consider single-sequence 
models for quick 
assessments.

Ideal for situations where 
complex multi-sequence 
models are unnecessary.

Automated 
Segmentation for 
Generalization:
Implement automated 
segmentation models for 
generalizability.

Enhances clinical response 
assessment in various 
scenarios, even with 
incomplete data.
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